перейти к полному списку дипломных проектов
Ссылка на скачивания файла в формате .doc находится в конце странички
2 Метод конечных элементов
Этот метод в настоящее время достиг такого уровня, что многие часто сомневаются - может ли появиться лучший метод
Министерство образования и науки Республики Казахстан
Карагандинский Государственный Технический Университет
Кафедра ____САПР______
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
к курсовой работе
По дисциплине: "Моделирование систем и комплексов"
Тема: "Автоматизированный анализ проектирования на микроуровне"
Руководитель
(подпись) (дата)
Студент
(подпись) (дата)
2009
Содержание
Введение
1. Задание
2. Разработка концептуальной модели и расчетной схемы объекта анализа
3. Выбор метода автоматизированного анализа объекта проектирования
3.1 Метод конечных разностей
3.2 Метод конечных элементов
4. Выбор и краткое описание программных и технических средств автоматизированного анализа
4.1 COSMOS
4.2 ANSYS
5. Построение дискретной модели объекта анализа и программной модели
6. Планирование машинных экспериментов и их реализация
7. Анализ и интерпретация результатов моделирования
Заключение
Список используемой литературы
Приложения
Введение
В данном курсовом проекте требуется спроектировать напряженно-деформированное состояние исследуемого объекта при заданных граничных условиях и установить зависимости для него от геометрических параметров на основе машинного эксперимента.
В ходе выполнения данного курсового проекта нам необходимо будет разработать концептуальную модель объекта, построить расчетную схему объекта моделирования, разработать модель для автоматизированного анализа, создать командный файл, поучить регрессионные зависимости исследуемых данных. Кроме того, по указанию преподавателя необходимо провести качественную и количественную оценки исследуемых характеристик моделируемого объекта для сравнения с результатами имитационного эксперимента.
После ряда прогонов полученной модели на ПЭВМ и получения результатов машинного эксперимента с требуемой точностью необходимо будет провести их интерпретацию и анализ в терминах объекта моделирования, а затем оформить пояснительную записку и графическую часть курсового проекта.
Концептуальная модель необходимо будет проверить на непротиворечивость и полноту описания, для чего надо убедиться, что задание содержит всю необходимую качественную и количественную информацию об объекте. Далее модель проверяют на отсутствие неформализованных и нереализуемых описаний, ситуаций, соотношений. Затем необходимо провести (согласно заданию) качественную и количественную оценки характеристик процесса функционирования объекта.
Итогом курсового проекта является техническая документация в виде разработанных схем и программного обеспечения моделирования объекта, результаты машинного эксперимента с моделью объекта, включая выводы и рекомендации по их использованию при исследовании и разработке реального объекта, пояснительная записка, содержащая документацию по выполнению автоматизированного анализа объекта моделирования.
1. Задание
Требуется спроектировать напряженно-деформированное состояние исследуемого объекта при заданных граничных условиях и установить зависимости для него от геометрических параметров на основе машинного эксперимента.
Материал - сталь;
Модуль упругости E=200000 МПа;
Коэффициент Пуассона v=0,3.
2. Разработка концептуальной модели и расчетной схемы объекта анализа
Целью данного этапа является построение концептуальной (содержательной) модели процесса функционирования объекта с проведением его формализации.
Внешние воздействия на объект проектирования выражены в виде силы нагружения 100 МПа. Силы распределены равномерно.
Таким образом, нам необходимо построить фигуру, изображенную на рисунке 2.1
Рисунок 2.1 - Объект анализа
3. Выбор метода автоматизированного анализа объекта проектирования
Моделирование многочисленных физических, биологических и химических явлений часто приводит к решению линейных и нелинейных уравнений или систем уравнений в частных производных. Существуют традиционные математические средства, позволяющие получить решение в определенных случаях, но для решения конкретных проблем, возникающих в науке и технике, невозможно обойтись без использования численных методов. С ростом производительности ЭВМ численное моделирование приобретает особое значение, т.к позволяет дополнить или даже заменить прямой эксперимент. Последний часто дорог, его постановка бывает трудоемкой или вообще невозможной. В настоящее время существует ряд различных методов автоматизированного анализа. Среди них наиболее популярными являются методы конечных элементов и конечных разностей.
3.1 Метод конечных разностей
Метод конечных разностей относится к методам сеток и содержит три этапа:
1 этап - Дискретизация - на данном этапе область решения разбивается на сетку, как правило, регулярную, в дальнейшем в узлах сетки будут определены узловые значения искомой функции.
2 этап - Аппроксимация - здесь осуществляется переход от дифференциального оператора к разностному аналогу.
3 этап - Алгебраизация - подстановка разностных аналогов дифференциальных операторов в исходное уравнение и получение системы алгебраических уравнений.
3.2 Метод конечных элементов
Этот метод в настоящее время достиг такого уровня, что многие часто сомневаются - может ли появиться лучший метод. Диапазон применимости МКЭ, их эффективность и сравнительная легкость реализации, делают их серьезными соперниками для любого метода. Достоинствами МКЭ являются гибкость и разнообразие сеток, стандартные приемы построения дискретных задач для произвольных областей, простота учета естественных краевых условий. Кроме того, математический анализ МКЭ является более простым, его методы применимы к более широкому классу задач, а оценки погрешностей приближенных решений получаются при менее жестких ограничениях, чем в методе конечных разностей.
скачать бесплатно Автоматизированный анализ проектирования на микроуровне
Содержание дипломной работы
2 Метод конечных элементов
Этот метод в настоящее время достиг такого уровня, что многие часто сомневаются - может ли появиться лучший метод
Программа ANSYS обладает многими возможностями конечно-элементного анализа - от простого линейного статического до сложного нелинейного динамического (нестационарного)
Построение дискретной модели объекта анализа и программной модели
Прежде всего, необходимо проанализировать свою деталь
Задание свойств материала
Main Menu>Preprocessor>Material Props>Polynomial
EX - модуль упругости - ввести 200000
(MP,EX,1, 200000)
NUXY - коэффициент Пуассона - ввести 0
Задание размера конечных элементов:
Main Menu>Preprocessor>Meshing>Size Cntrls>ManualSize>Global>Size
В поле Size ввести размер конечного элемента = 5
Разработка моделей сводится к последовательному выполнению следующих этапов:
Планирование эксперимента;
Проведение эксперимента;
Составление заказа на модели;
Анализ модели