перейти к полному списку дипломных проектов
Ссылка на скачивания файла в формате .doc находится в конце странички
8 Отклонение текущей величины силы магнитного поля, действующей на верхний магнит от наилучшей последней величины в зависимости от количества элементов сетки модели
Рис.2.2 Эквипотенциальные линии магнитной индукции при величине воздушного зазора между постоянными магнитами равного 4мм.
Рис 2.3 Эквипотенциальные линии магнитной индукции вблизи магнитной системы при величине воздушного зазора между постоянными магнитами равного 4мм.
Из рис. 2.2 и рис.2.3 видно, что эквипотенциальные линии магнитной индукции не выходят за внешние границы модели т.к. использовалось “потокопараллельное” граничное условие.
2.1.3 Расчет силы магнитного поля на верхний магнит устройства методами программной системы конечно-элементного анализа ANSYS
В задаче, реализованной программной системой конечно-элементного анализа ANSYS, для каждого воздушного зазора рассчитывалась сила магнитного поля двумя различными методами: с помощью виртуальной работы и тензора Максвелла. Сила магнитного поля рассчитывалась на каждый элемент воздушного слоя, прилегающего к верхнему магниту, а затем суммировалась. Поэтому воздушный слой, окружающий объект на который рассчитывается сила магнитного поля, должен моделироваться элементами сетки квадратного вида для получения более точных результатов.
Рис. 2.4 Технические требования для расчета силы магнитного поля на исследуемый объект в программной системе конечно-элементного анализа ANSYS.
В таблице 2.1 приведены результаты расчета силы магнитного поля на верхний магнит с помощью программной системы конечно-элементного анализа ANSYS.
Таблица 2.1 Зависимость силы, действующей на верхний магнит от воздушного зазора между магнитами.
Рис.2.5 Зависимость силы магнитного поля, действующего на верхний магнит от величины воздушного зазора.
2.1.4 Исследование сходимости методов расчета силы магнитного поля в зависимости от величина воздушного пространства, окружающего магнитную систему
Была исследована сходимость методов расчета силы магнитного поля в зависимости от величины воздушного пространства, окружающего магнитную систему. Выбор оптимального воздушного пространства позволяет корректно использовать “потокопараллельное” граничное условие, и не перегружать программную систему конечно-элементного анализа ANSYS лишними расчетами.
Таблица 2.2 Анализ сходимости методов расчета силы магнитного поля на верхний магнит в зависимости от величина воздушного пространства, окружающего магнитную систему.
Рис.2.6 Зависимость силы магнитного поля, действующей на верхний магнит, от величины воздушного пространства, окружающего магнитную систему.
Из таблицы 2.2 и рис. 2.6 видно, что уже при ширине равной 30 мм воздушного пространства, окружающего магнитную систему. отклонение текущего значения к последнему меньше 1%. Поэтому в исследуемой модели ширина воздушного слоя выбирается равной 40мм, это в 8 раз больше радиуса постоянного магнита.
2.1.5 Исследование сходимости методов расчета силы магнитного поля в зависимости от количества элементов модели
Была исследована сходимость методов расчета силы магнитного поля в зависимости от количества элементов модели. Важно отметить, что точность вычислений существенно зависит от числа элементов модели.
Таблица №2.3 Анализ сходимости методов расчета силы магнитного поля на верхний магнит.
Рис. 2.7 Зависимость силы магнитного поля, действующей на верхний магнит, от количества элементов модели.
Рис.2.8 Отклонение текущей величины силы магнитного поля, действующей на верхний магнит от наилучшей последней величины в зависимости от количества элементов сетки модели.
Из рисунка 2.8 видно, что для метода расчета с помощью виртуальной работы, даже при грубой сетке в 50 элементов, сила магнитного поля, действующая на верхний магнит, дает отклонение не более 10% от значения, полученного для модели с сеткой в 20400 элементов.
скачать бесплатно Исследование магнитных систем в программной системе конечно-элементного анализа ANSYS
Содержание дипломной работы
[2] С развитием применения редкоземельных металлов появились высокоэнергетические постоянные магниты, пригодные для создания сильных магнитных полей
? ? const, то из уравнений Максвелла получим
[6]
или
[7]
Вектор-потенциал есть величина векторная и в декартовой системе координат
,
вектор плотности тока
Узловые значения скалярной величины ?? обозначаются через , а координаты трех узлов – через , что позволяет определить функции формы через координаты узлов расчетной сети
Тот факт, что магнитный поток принимается не выходящим за области модели, подразумевает, что поток будет параллелен внешним границам модели
8 Отклонение текущей величины силы магнитного поля, действующей на верхний магнит от наилучшей последней величины в зависимости от количества элементов сетки модели
Расчет силы магнитного поля на нижний магнит устройства
В описываемой установке постоянные магниты расположены одноименными полюсами вертикально друг к другу, обеспечивая этим рабочий зазор
Техническое железо обладает высокой индукцией насыщения (до 2,2 Тл), высокой магнитной проницаемостью и низкой коэрцитивной силой
Для технического железа имеется кривая намагниченности В(Н), для стали 3 таких данных нет, поэтому при решении задачи для стали3 использовалась кривая В(Н) для технического железа, рис
11 Отклонение текущей величины удерживающей силы от последней величины в зависимости от количества элементов по длине воздушного зазора, зазор 0,1 мм
5 мм, погрешность измерений возникала главным образом из-за плохого контакта магнитного держателя с поверхностью ферромагнитного основания
Микроклиматические условия
Микроклимат рабочего помещения должен обеспечивать сохранение теплового баланса и ощущение теплового комфорта работающих
При периодическом наблюдении за экраном рекомендуется располагать элементы оборудования так, чтобы экран находился справа, клавиатура — напротив правого плеча, а документы — в центре угла обзора
Высота пространства под столом для ног рекомендуется порядка 60 см на уровне колен и не менее 80 см на уровне ступней
Общие эргономические требования и требования безопасности" и СанПиН 2
Пособие для вузов