перейти к полному списку дипломных проектов
Ссылка на скачивания файла в формате .doc находится в конце странички
Создание, уничтожение нитей, распределение на них витков параллельных циклов или параллельных секций – всё это брал на себя компилятор
А использование этих систем на распределённых системах существенно затруднено тем, что
Во-первых, поскольку взаимодействие процессоров через коммуникационную систему требует значительного времени (латентность – время самого простого взаимодействия - велика по сравнению со временем выполнения одной машинной команды), то вычислительная работа должна распределяться между процессорами крупными порциями.
Во-вторых, в отличие от многопроцессорных ЭВМ с общей памятью, на системах с распределенной памятью необходимо произвести не только распределение вычислений, но и распределение данных, а также обеспечить на каждом процессоре доступ к удаленным данным - данным, расположенным на других процессорах. Для обеспечения эффективного доступа к удаленным данным требуется производить анализ индексных выражений не только внутри одного цикла, но и между разными циклами. К тому же, недостаточно просто обнаруживать факт наличия зависимости по данным, а требуется определить точно тот сегмент данных, который должен быть переслан с одного процессора на другой.
В третьих, распределение вычислений и данных должно быть произведено согласованно.
Несогласованность распределения вычислений и данных приведет, вероятнее всего, к тому, что параллельная программа будет выполняться гораздо медленнее последовательной. Согласованное распределение вычислений и данных требует тщательного анализа всей программы, и любая неточность анализа может привести к катастрофическому замедлению выполнения программы.
В настоящее время существуют следующие модели программирования:
Модель передачи сообщений. MPI.[1]
В модели передачи сообщений параллельная программа представляет собой множество процессов, каждый из которых имеет собственное локальное адресное пространство. Взаимодействие процессов - обмен данными и синхронизация - осуществляется посредством передачи сообщений. Обобщение и стандартизация различных библиотек передачи сообщений привели в 1993 году к разработке стандарта MPI (Message Passing Interface). Его широкое внедрение в последующие годы обеспечило коренной перелом в решении проблемы переносимости параллельных программ, разрабатываемых в рамках разных подходов, использующих модель передачи сообщений в качестве модели выполнения.
В числе основных достоинств MPI по сравнению с интерфейсами других коммуникационных библиотек обычно называют следующие его возможности:
Возможность использования в языках Фортран, Си, Си++;
Предоставление возможностей для совмещения обменов сообщениями и вычислений;
Предоставление режимов передачи сообщений, позволяющих избежать излишнего копирования информации для буферизации;
Широкий набор коллективных операций (например, широковещательная рассылка информации, сбор информации с разных процессоров), допускающих гораздо более эффективную реализацию, чем использование соответствующей последовательности пересылок точка-точка;
Широкий набор редукционных операций (например, суммирование расположенных на разных процессорах данных, или нахождение их максимальных или минимальных значений), не только упрощающих работу программиста, но и допускающих гораздо более эффективную реализацию, чем это может сделать прикладной программист, не имеющий информации о характеристиках коммуникационной системы;
Удобные средства именования адресатов сообщений, упрощающие разработку стандартных программ или разделение программы на функциональные блоки;
Возможность задания типа передаваемой информации, что позволяет обеспечить ее автоматическое преобразование в случае различий в представлении данных на разных узлах системы.
Однако разработчики MPI подвергаются и суровой критике за то, что интерфейс получился слишком громоздким и сложным для прикладного программиста. Интерфейс оказался сложным и для реализации, в итоге, в настоящее время практически не существует реализаций MPI, в которых в полной мере обеспечивается совмещение обменов с вычислениями.
Появившийся в 1997 проект стандарта MPI-2 [2] выглядит еще более громоздким и неподъемным для полной реализации. Он предусматривает развитие в следующих направлениях:
Динамическое создание и уничтожение процессов;
Односторонние коммуникации и средства синхронизации для организации взаимодействия процессов через общую память (для эффективной работы на системах с непосредственным доступом процессоров к памяти других процессоров);
Параллельные операции ввода-вывода (для эффективного использования существующих возможностей параллельного доступа многих процессоров к различным дисковым устройствам).
Вкратце о других моделях:
Модель неструктурированных нитей. Программа представляется как совокупность нитей (threads), способных выполняться параллельно и имеющих общее адресное пространство. Имеющиеся средства синхронизации нитей позволяют организовывать доступ к общим ресурсам. Многие системы программирования поддерживают эту модель: Win32 threads, POSIX threads, Java threads.
Модель параллелизма по данным. Основным её представителем является язык HPF [3]. В этой модели программист самостоятельно распределяет данные последовательной программы по процессорам. Далее последовательная программа преобразуется компилятором в параллельную, выполняющуюся либо в модели передачи сообщений, либо в модели с общей памятью. При этом каждый процессор производит вычисления только над теми данными, которые на него распределены.
Модель параллелизма по управлению. Эта модель возникла в применении к мультипроцессорам. Вместо терминов нитей предлагалось использовать специальные конструкции – параллельные циклы и параллельные секции. Создание, уничтожение нитей, распределение на них витков параллельных циклов или параллельных секций – всё это брал на себя компилятор.
скачать бесплатно Обзор существующих моделей параллельного программирования
Содержание дипломной работы
Поэтому главным недостатком выбора одной из них в качестве модели программирования является то, что такая модель непривычна и неудобна для программистов, разрабатывающих вычислительные программы
Создание, уничтожение нитей, распределение на них витков параллельных циклов или параллельных секций – всё это брал на себя компилятор
Когда показывать? Важно показывать то, что полезно в данный момент для отладки эффективности, чтобы не загромождать пользователя излишней информацией
Существуют следующие составляющие потерянного времени:
потери из-за недостатка параллелизма, приводящего к дублированию вычислений на нескольких процессорах (недостаточный параллелизм)
Этот интервал может включать в себя несколько интервалов следующего (первого) уровня
В последнем случае причина может быть очень простой – неверное задание матрицы процессоров при запуске программы или неверное распределение данных и вычислений
Он может ограничить, например, количество регулярно повторяющихся внешних итераций до одной - двух итераций
3 Устройство анализатора
Итак, анализатор состоит из трех основных компонент
В этом классе в качестве вспомогательного используется класс Processors
Первая используемая для этого функция – это функция Integrate()
000898 0 0
Выводы:
Отладка эффективности параллельных программ – процесс очень сложный и трудоемкий
Развитые средства анализа эффективности могут существенно ускорить этот процесс
Операции получения/ожидания/посылки-получения с блокировкой MPI_Recv, MPI_Wait, MPI_Waitany, MPI_Waitall, MPI_Waitsome, MPI_Probe, MPI_Sendrecv, MPI_Sendrecv_replace
темно-синий
5