(5) Введение избыточности в кодовые комбинации при использовании корректирующих кодов существенно снижает скорость передачи информации и эффективность использования канала связи


перейти к полному списку дипломных проектов

Ссылка на скачивания файла в формате .doc находится в конце странички

(5) Введение избыточности в кодовые комбинации при использовании корректирующих кодов существенно снижает скорость передачи информации и эффективность использования канала связи

Курс: Теория информации и кодирования

Тема: КОРРЕКТИРУЮЩИЕ КОДЫ

Содержание

КОРРЕКТИРУЮЩИЕ КОДЫ. ОСНОВНЫЕ ПОНЯТИЯ

ЛИНЕЙНЫЕ ГРУППОВЫЕ КОДЫ

КОД ХЭММИНГА

СПИСОК ЛИТЕРАТУРЫ

1. КОРРЕКТИРУЮЩИЕ КОДЫ. ОСНОВНЫЕ ПОНЯТИЯ

В соответствии с теоремой Шеннона для дискретного канала с помехами, вероятность ошибки при передаче данных по каналу связи может быть сколь угодно малой при выборе соответствующего метода кодирования сигнала, т. е. помеха не накладывает существенных ограничений на точность передачи информации (данных). Достоверность передаваемой информации может быть обеспечена применением корректирующих кодов.

Помехоустойчивыми или корректирующими кодами называются коды, позволяющие обнаружить и устранить ошибки при передаче информации из-за воздействия помех.

Наиболее распространенным является класс кодов с коррекцией одиночных и обнаружением двойных ошибок (КО-ОД). Самым известных среди этих кодов является код Хэмминга, имеющий простой и удобный для технической реализации алгоритм обнаружения и исправления одиночной ошибки.

В ЭВМ эти коды используются для повышения надежности оперативной памяти (ОП) и магнитных дисков. Число ошибок в ЭВМ зависит от типа неисправностей элементов схем (например, неисправность одного элемента интегральной схемы (ИС) вызывает одиночную ошибку, а всей ИС ОП - кратную). Для обнаружения кратных ошибок используется код КО-ОД-ООГ (коррекция одиночной, обнаружение двойной и обнаружение кратной ошибки в одноименной группе битов).

Среди корректирующих кодов широко используются циклические коды, в ЭВМ эти коды применяются при последовательной передаче данных между ЭВМ и внешними устройствами, а также при передаче данных по каналам связи. Для исправления двух и более ошибок (d0 ( 5) используются циклические коды БЧХ (Боуза - Чоудхури - Хоквингема), а также Рида-Соломона, которые широко используются в устройствах цифровой записи звука на магнитную ленту или оптические компакт-диски и позволяющие осуществлять коррекцию групповых ошибок. Способность кода обнаруживать и исправлять ошибки достигается за счет введений избыточности в кодовые комбинации, т. е. кодовым комбинациям из к двоичных информационных символов, поступающих на вход кодирующего устройства, соответствует на выходе последовательность из n двоичных символов (такой код называется (n, k) - кодом).

Если N0 = 2n - общее число кодовых комбинаций, а N = 2k - число разрешенных, то число запрещенных кодовых комбинаций равно

N0-N = 2n -2k.

При этом число ошибок, которое приводит к запрещенной кодовой комбинации равно:

, (1)

где S - кратность ошибки, т. е. количество искаженных символов в кодовой комбинации S = 0, 1, 2, ...

Cni - сочетания из n элементов по i, вычисляемое по формуле:

, (2)

для S = 0 ; 

S = 1 ; 

S = 2 ; 

S = 3 ;  и т. д.

Для исправления S ошибок количество комбинаций кодового слова, составленного из m проверочных разрядов N = 2m, должно быть больше возможного числа ошибок (2), при этом количество обнаруживаемых ошибок в два раза больше, чем исправляемых

(3)

2m (  откуда .

Для одиночной ошибки, как наиболее вероятной .

В зависимости от исходных данных кода (n или k) можно использовать

формулы

 . (4)

При этом, m = [log2(1+n)] или m = [log2 {(k+1)+ [log2(k+1)]}], где ква-дратные скобки обозначают округление до большего целого.

В таблице 1 приведены соотношения между длиной кодовой комбинации и количеством информационных и контрольных разрядов для кода исправляющего одиночную ошибку, а также эффективность использования канала связи.

Для исправления двукратной ошибки

 или . (5)

Введение избыточности в кодовые комбинации при использовании корректирующих кодов существенно снижает скорость передачи информации и эффективность использования канала связи.

Например, для кода (31, 26) скорость передачи информации равна

,

т. е. скорость передачи уменьшается на 16%.

Таблица 1

Как видно из таблицы 1, чем больше n, тем эффективнее используется канал.

скачать бесплатно КОРРЕКТИРУЮЩИЕ КОДЫ

Содержание дипломной работы

(5) Введение избыточности в кодовые комбинации при использовании корректирующих кодов существенно снижает скорость передачи информации и эффективность использования канала связи
, (11) где RmkT -транспонированная проверочная матрица (поменять строки на столбцы); Imm - единичная матрица
Показать процесс кодирования, декодирования и исправления ошибки для передаваемого информационного слова 1001
Существуют различные методы реализации кода Хэмминга и кодов которые являются модификацией кода Хэмминга
Показать процесс кодирования, декодирования и исправления одиночной ошибки на примере информационного слова 0101
Проверочные символы записываются либо в основное, либо специальное ЗУ
Любая однократная ошибка в 16 разрядном слове данных изменяет 3 байта в 6 разрядном контрольном слове
Микропроцессорные кодеры и декодеры/В

заработать

Закачай файл и получай деньги