перейти к полному списку дипломных проектов
Ссылка на скачивания файла в формате .doc находится в конце странички
, (11)
где RmkT -транспонированная проверочная матрица (поменять строки на столбцы); Imm - единичная матрица
Пример 1. Определить количество проверочных разрядов для систематического кода исправляющего одиночную ошибку и состоящего из 20 информационных разрядов.
Решение: Общая длина кодовой комбинации равна n = k+m, где k- количество информационных разрядов, а m- проверочных разрядов.
Для обнаружения двойной и исправления одиночной ошибки зависимости для разрядов имеют вид , при этом
m = [log2 {(k+1)+ [log2(k+1)]}]=[log2 {(20+1)+ [log2(20+1)]}]=5,
т. е. получим (25, 20)-код.
2. ЛИНЕЙНЫЕ ГРУППОВЫЕ КОДЫ
Линейным называется код, в котором проверочные символы представляют собой линейные комбинации информационных. Групповым называется код, который образует алгебраическую группу по отношению операции сложения по модулю два.
Свойство линейного кода: сумма (разность) кодовых векторов линей-ного кода дает вектор, принадлежащий этому коду. Свойство группового кода: минимальное кодовое расстояние между кодовыми векторами равно минимальному весу ненулевых векторов. Вес кодового вектора равен числу единиц в кодовой комбинации.
Групповые коды удобно задавать при помощи матриц, размерность которых определяется параметрами k и n. Число строк равно k, а число столбцов равно n = k+m.
. (6)
Коды, порождаемые этими матрицами, называются (n, k)-кодами, а соответствующие им матрицы порождающими (образующими, производящими). Порождающая матрица G состоит из информационной Ikk и проверочной Rkm матриц. Она является сжатым описанием линейного кода и может быть представлена в канонической (типовой) форме
. (7)
В качестве информационной матрицы удобно использовать единичную матрицу, ранг которой определяется количеством информационных разрядов
. (8)
Строки единичной матрицы представляют собой линейно-незави-симые комбинации (базисные вектора), т. е. их по парное суммирование по модулю два не приводит к нулевой строке.
Строки порождающей матрицы представляют собой первые k комбинаций корректирующего кода, а остальные кодовые комбинации могут быть получены в результате суммирования по модулю два всевозможных сочетаний этих строк.
Столбцы добавочной матрицы Rkm определяют правила формирования проверок. Число единиц в каждой строке добавочной матрицы должно удовлетворять условию r1 ( d0-1, но число единиц определяет число сумматоров по модулю 2 в шифраторе и дешифраторе, и чем их больше, тем сложнее аппаратура.
Производящая матрица кода G(7,4) может иметь вид
и т.д.
Процесс кодирования состоит во взаимно - однозначном соответствии k-разрядных информационных слов - I и n-разрядных кодовых слов - с
c=IG. (9)
Например: информационному слову I =[1 0 1 0] соответствует следующее кодовое слово
. (10)
При этом, информационная часть остается без изменений, а корректирующие разряды определяются путем суммирования по модулю два тех строк проверочной матрицы, номера которых совпадают с номерами разрядов, содержащих единицу в информационной части кода.
Процесс декодирования состоит в определении соответствия принятого кодового слова, переданному информационному. Это осуществляется с помощью проверочной матрицы H(n, k).
, (11)
где RmkT -транспонированная проверочная матрица (поменять строки на столбцы); Imm - единичная матрица.
Для (7, 4)- кода проверочная матрица имеет вид
. (12)
Между G(n ,k) и H(n, k) существует однозначная связь, т. к. они определяются в соответствии с правилами проверки, при этом для любого кодового слова должно выполняться равенство cHT = 0.
скачать бесплатно КОРРЕКТИРУЮЩИЕ КОДЫ
Содержание дипломной работы
(5)
Введение избыточности в кодовые комбинации при использовании корректирующих кодов существенно снижает скорость передачи информации и эффективность использования канала связи
, (11)
где RmkT -транспонированная проверочная матрица (поменять строки на столбцы); Imm - единичная матрица
Показать процесс кодирования, декодирования и исправления ошибки для передаваемого информационного слова 1001
Существуют различные методы реализации кода Хэмминга и кодов которые являются модификацией кода Хэмминга
Показать процесс кодирования, декодирования и исправления одиночной ошибки на примере информационного слова 0101
Проверочные символы записываются либо в основное, либо специальное ЗУ
Любая однократная ошибка в 16 разрядном слове данных изменяет 3 байта в 6 разрядном контрольном слове
Микропроцессорные кодеры и декодеры/В