перейти к полному списку дипломных проектов
Ссылка на скачивания файла в формате .doc находится в конце странички
5)
где - удельная теплоемкость материала оболочки порошковой проволоки, Дж/кг*град; - плотность материала оболочки порошковой проволоки, кг/м3; Тоб - температура оболочки, (С
Таким образом, наше влияние на конечный результат, определяемый выражением для , весьма ограничено. Поэтому рассмотрим составляющие уравнения для с точки зрения управляемости процессом плавления сердечника. Неравномерность плавления оболочки и сердечника порошковой проволоки непосредственно зависит от распределения сварочного тока между оболочкой и сердечником. Электросопротивление сердечника в 3000 раз больше, чем электросопротивление металла оболочки [12], поэтому проводимость шихты сердечника составляет обычно 3,5-4% от проводимости оболочки порошковой проволоки. Следовательно, сварочный ток протекает практически по оболочке порошковой проволоки, а плотность тока в порошковой проволоке можно рассчитывать по сечению оболочки.
Площадь оболочки S в поперечном сечении составляет обычно 2 - 5 мм2. Расчет показывает, что и процессе сварки оболочка порошковых проволок на вылете может нагреваться до температур примерно 1000 °С
В некоторых случаях отставания плавления сердечника от оболочки порошковой проволоки планируют специально, например, когда необходимо поступление легирующих составляющих в наплавленный металл в нерасплавленном состоянии. Для этого с целью ухудшения теплопередачи между сердечником и оболочкой проволоки помещают теплоизолирующую прослойку толщиной 0,1-0,2 мм с низкой теплопроводностью.
В основу расчета теплового баланса нагрева вылета порошковой проволоки положена расчетная схема Н.Н. Рыкалина [13], в которой учтены некоторые особенности теплового состояния, характерные для порошковой проволоки:
Электрическое сопротивление шихты сердечника намного больше сопротивления оболочки порошковой проволоки.
Сварочный ток проходит в основном через оболочки проволоки, поэтому плотность тока в порошковой проволоке можно считать по сечению оболочки.
При прохождении сварочного тока по порошковой проволоке все тепло выделяется в ее оболочке.
Выделившееся тепло идет на нагрев оболочки проволоки, сердечника и частично теряется через боковую поверхность порошковой проволоки путем теплоотдачи в окружающую среду.
Поскольку нас интересует нагрев порошковой проволоки сварочным током на вылете, а составляющие теплового баланса Qu, Qk, Qэ оказывают влияние на нагрев сердечника только на заключительной стадии плавления порошковой проволоки (на участке вылета длиной 3-5 мм в области дуги), где температура сердечника приближается к температуре плавления компонентов шихты, то при расчете уравнения теплового баланса мы их учитывать не будем.
Итак, выделим элементарный участок порошковой проволоки длиной , находящийся на расстоянии от токоподвода. Тогда тепловой баланс нагрева участка порошковой проволоки сварочным током с учетом принятых допущений выразится уравнением:
, (1.3)
где - джоулево тепло, выделившееся в оболочке на данном участке вылета;
- приращение теплосодержания оболочки проволоки;
- приращение теплосодержания сердечника порошковой проволоки;
- приращение теплосодержания изолирующей прослойки;
- теплоотдача с боковой поверхности данного участка вылета в окружающую среду.
Слагаемые правой части уравнения (1.3) различаются по величине. Максимальной величиной обладает член , поскольку источник теплоты находится именно в оболочке. Величины и пропорциональны коэффициентам теплопередачи соответственно в сердечник и в окружающую среду.
При прохождении тока в элементе оболочки вылета за время выделится теплота:
, (1.4)
где I - ток наплавки, А;
- удельное сопротивление материала оболочки, Ом*м;
S0 - площадь поперечного сечения оболочки порошковой проволоки, м2.
Накопление теплоты в элементе оболочки проволоки при увеличении температуры на в единицу времени за время составит:
, (1.5)
где - удельная теплоемкость материала оболочки порошковой проволоки, Дж/кг*град; - плотность материала оболочки порошковой проволоки, кг/м3; Тоб - температура оболочки, (С.
Накопление теплоты в элементе сердечника вылета порошковой проволоки при увеличении температуры шихты на в единицу времени за время составит:
, (1.6)
где - удельная теплоемкость материала сердечника порошковой проволоки, Дж/кг*град; - плотность материала сердечника порошковой проволоки, кг/м3; - площадь поперечного сечения сердечника порошковой проволоки, м2; - средняя объемная температура сердечника порошковой проволоки, (С. Величину можно найти из соотношения
. (1.7)
Накопление теплоты в элементе изолирующей прослойки при увеличении температуры на в единицу времени за время составит:
(1.8)
где - удельная теплоемкость материала прослойки, Дж/кг*град;
- плотность материала прослойки, кг, м3;
- средняя температура изолирующей прослойки, (С;
- площадь поперечного сечения прослойки, м2.
скачать бесплатно Моделирование тепловых процессов при наплавке порошковой проволокой
Содержание дипломной работы
Порошковая проволока обладает хорошими сварочно-технологическими свойствами в широком диапазоне режимов сварки, чем выгодно отличается от проволок сплошного сечения
Определяющее влияние на характер плавления порошковой проволоки оказывает соотношение скоростей плавления оболочки и сердечника, которое определяется тепловым состоянием системы "оболочка-сердечник"
5)
где - удельная теплоемкость материала оболочки порошковой проволоки, Дж/кг*град; - плотность материала оболочки порошковой проволоки, кг/м3; Тоб - температура оболочки, (С
12)
За исключением небольшого участка, нагреваемого с торца, сердечник можно представить в виде цилиндра бесконечной длины, нагреваемого с поверхности
Для работы с ПМК достаточно одного работника, имеющего достаточный минимум знаний об объекте проектирования и некоторый опыт работы на персональном компьютере в среде Windows
Для этого нужно правильно определить режимы сварки, тип и геометрические параметры порошковой проволоки;
высокая стоимость порошковой проволоки требует ее оптимального использования
9) необходимо знать зависимость температуры сердечника от времени t или от температуры оболочки Тоб
18)
с краевыми условиями
(2
25)
где модифицированная функция Бесселя первого рода нулевого порядка; k0 - модифицированная функция Бесселя второго рода нулевого порядка
31) для , получим:
Тогда для коэффициента получим выражение:
,
а частное решение (2
при выражение (2
1 Способ наплавки с предварительным подогревом
Одним из перспективных способов увеличения производительности и улучшения качества наплавки является дополнительный подогрев
2 Исследование электротермических процессов на участке подогрева
Участок подогрева обладает определенным электрическим сопротивлением
53) вычислить Qн, а также величины:
,
,
где сп - приведенная теплоемкость порошковой проволоки;
М - характеристика теплопроводности сердечника порошковой проволоки
59)
где tн - время подогрева; tв - общее время нагрева вылета порошковой проволоки
61), подставим его в (2
Для выравнивания нагрева сердечника по сечению порошковой проволоки необходимо достаточное время нагрева на вылете
Для того, чтобы специфицировать процесс передачи и качественное содержание данных, необходимо разработать диаграмму потоков данных (DFD) для разрабатываемого программного продукта
Существует два физических представления: представление реализации и представление развертывания
Позволяет открыть созданный ранее отчет для просмотра и печати;
модуль сохранения отчета
3 Информационное обеспечение комплекса
Информационное обеспечение - это та информация, которая необходима для работы программного комплекса, и информация, которую мы получаем в результате его работы
Матричные принтеры обычно при работе создают шум, качество печати не всегда удовлетворительно, однако стоимость даже хорошего матричного принтера гораздо ниже, чем струйного или лазерного
2 Модуль построения графиков
Этот модуль предназначен для построения графических зависимостей
Для расчета параметров подогрева предназначена закладка "Параметры подогрева"
4 Программа и методика испытаний
Контроль программного продукта осуществляется в следующем порядке:
проверка запуска программы
Элементы глаза находятся в постоянному напряжении, что приводит к утомлению, "рези" в глазах и снижения остроты зрения
Подача воздуха производиться в верхнюю зону малыми скоростями из расчета создания подвижности воздуха на рабочем месте менее 0
Рабочие помещения не граничат с помещениями, в которых уровень шума и вибрации превышает допустимые значения
Расстояние от экрана до глаз пользователя в зависимости от размера экрана
Хранилища информации, помещения для сохранения перфокарт, магнитных лент, пакетов магнитных дисков необходимо размещать в отдельных помещениях, оснащенных невозгораемыми стеллажами и шкафами
Наименьший размер объекта различения в нашем случае равен 1-5 мм (шрифт на экране монитора), поэтому принимаем разряд зрительной работы - V (зрительная работа малой точности)
Получена формула для расчета неравномерности нагрева оболочки и сердечника в зависимости от скорости нагрева оболочки, диаметра порошковой проволоки и коэффициента температуропроводности сердечника
Получена формула для расчета сопротивления участка подогрева оболочки порошковой проволоки в зависимости от его длины и температуры подогрева
Для выравнивания нагрева сердечника по сечению порошковой проволоки необходимо достаточное время нагрева на вылете
Для выравнивания нагрева сердечника по сечению порошковой проволоки необходимо достаточное время нагрева на вылете
Для выравнивания нагрева сердечника по сечению порошковой проволоки необходимо достаточное время нагрева на вылете
Для выравнивания нагрева сердечника по сечению порошковой проволоки необходимо достаточное время нагрева на вылете