Последнее, что осталось сделать – построить функции принадлежности для каждого лингвистического терма из базового терм-множества T


перейти к полному списку дипломных проектов

Ссылка на скачивания файла в формате .doc находится в конце странички

Последнее, что осталось сделать – построить функции принадлежности для каждого лингвистического терма из базового терм-множества T

Проиллюстрируем это на простом примере. Формализуем неточное определение 'горячий чай'. В качестве x (область рассуждений) будет выступать шкала температуры в градусах Цельсия. Очевидно, что она будет изменяется от 0 до 100 градусов. Нечеткое множество для понятия 'горячий чай' может выглядеть следующим образом:

C={0/0; 0/10; 0/20; 0,15/30; 0,30/40; 0,60/50; 0,80/60; 0,90/70; 1/80; 1/90; 1/100}.

Так, чай с температурой 60 С принадлежит к множеству 'Горячий' со степенью принадлежности 0,80. Для одного человека чай при температуре 60 С может оказаться горячим, для другого – не слишком горячим. Именно в этом и проявляется нечеткость задания соответствующего множества.

Для нечетких множеств, как и для обычных, определены основные логические операции[5]. Самыми основными, необходимыми для расчетов, являются пересечение и объединение.

Пересечение двух нечетких множеств (нечеткое "И"): A(B: MFAB(x)=min(MFA(x), MFB(x)).

Объединение двух нечетких множеств (нечеткое "ИЛИ"): A(B: MFAB(x)=max(MFA(x), MFB(x)).

В теории нечетких множеств разработан общий подход к выполнению операторов пересечения, объединения и дополнения, реализованный в так называемых треугольных нормах и конормах. Приведенные выше реализации операций пересечения и объединения – наиболее распространенные случаи t-нормы и t-конормы.

Для описания нечетких множеств вводятся понятия нечеткой и лингвистической переменных.[4]

Нечеткая переменная описывается набором (N,X,A), где N – это название переменной, X – универсальное множество (область рассуждений), A – нечеткое множество на X.

Значениями лингвистической переменной могут быть нечеткие переменные, т.е. лингвистическая переменная находится на более высоком уровне, чем нечеткая переменная. Каждая лингвистическая переменная состоит из:

- названия;

- множества своих значений, которое также называется базовым терм-множеством T. Элементы базового терм-множества представляют собой названия нечетких переменных;

- универсального множества X;

- синтаксического правила G, по которому генерируются новые термы с применением слов естественного или формального языка;

- семантического правила P, которое каждому значению лингвистической переменной ставит в соответствие нечеткое подмножество множества X.

Рассмотрим такое нечеткое понятие как 'Цена акции'. Это и есть название лингвистической переменной. Сформируем для нее базовое терм-множество, которое будет состоять из трех нечетких переменных: 'Низкая', 'Умеренная', 'Высокая' и зададим область рассуждений в виде X=[100;200] (единиц). Последнее, что осталось сделать – построить функции принадлежности для каждого лингвистического терма из базового терм-множества T.

Существует свыше десятка типовых форм кривых для задания функций принадлежности.[2] Наибольшее распространение получили: треугольная, трапецеидальная и гауссовская функции принадлежности.

Треугольная функция (рисунок 2.2) принадлежности определяется тройкой чисел (a,b,c), и ее значение в точке x вычисляется согласно выражению:

 (2.1)

При (b-a)=(c-b) имеем случай симметричной треугольной функции принадлежности, которая может быть однозначно задана двумя параметрами из тройки (a,b,c).



Рисунок 2.

скачать бесплатно Библиотека MFC

Содержание дипломной работы

Идея, лежащая в основе теории нечетких множеств, заключается в том, что человек в своей повседневной жизни мыслит и принимает решения на основе нечетких понятий
Тогда нечетким множеством С называется множество упорядоченных пар вида C={MFc(x)/x}, MFc(x) [0,1]
Последнее, что осталось сделать – построить функции принадлежности для каждого лингвистического терма из базового терм-множества T
Нечеткая нейронная сеть как правило состоит из четырех слоев: слоя фазификации входных переменных, слоя агрегирования значений активации условия, слоя агрегирования нечетких правил и выходного слоя
В отличие от простых когнитивных карт, нечеткие когнитивные карты представляют собой нечеткий ориентированный граф, узлы которого являются нечеткими множествами
Когда MS Windows обнаруживает ресурс окна в программе, она использует команды из этого ресурса для конструирования работающего окна
При перемещении мыши выводится значение точки x (с учетом масштаба) и степень принадлежности (значение данной функции принадлежности) этой точки x
гос
h" include
, нами было разработано и проведено 6 занятий по 3D моделированию, позволяющих изучить основы 3D моделирования
, нами было разработано и проведено 6 занятий по 3D моделированию, позволяющих изучить основы 3D моделирования
, нами было разработано и проведено 6 занятий по 3D моделированию, позволяющих изучить основы 3D моделирования

заработать

Закачай файл и получай деньги